CS-200
Computer Architecture

Part 5a. Multiprocessors
Cache Coherence

Paolo lenne

<paolo.ienne@epfl.ch>

Some slides developed in part by Profs. Adve, Falsafi, Hill, Lebeck, Reinhardt, Smith, and Singh
of University of lllinois, EPFL, Carnegie Mellon University, University of Wisconsin, Duke University, University of Michigan, and Princeton University

Flynn’s Taxonomy (1966)

Single/Multiple Instruction Streams (= programs)
Single/Multiple Data Streams

SISD: Uniprocessors, what we have seen so far

SIMD: A single program is run on multiple data sets at once. Classic examples are
Vector Architectures for high-performance computing, now fairly rare. More
commonly, x86 supports SIMD through various ISA extensions: MMX (1996), SSE
(1999-2008), and AVX (2011-2016)

MIMD: General form of parallelism with each processor executing its own program on
its own data

~\

Shared-Memory Multiprocessors
(UMA = Uniform Memory Access)

Every path to memory CPU CPU CPU , Typically a bus or a
is essentially the same simple interconnect

* Limited scalability (4-16 processors?)
 Very simple and fairly traditional architecture

Distributed-Memory Multiprocessors
(NUMA = Nonuniform Memory Access)

CPU

Local memory is
much faster to access

Memory

Interconnection Network / s\
 More scalable and cost effective way to grow memory system Often a

e . real network
e Communication is more complex and higher latency

Programming Paradigms

* Shared-Memory

Data exchanged implicitly through shared variables in a common memory space
Standard libraries (e.g., OpenMP) simplify programming
Natural on shared-memory architectures (e.g., SMP, NUMA)

Can be implemented as Distributed Shared Memory (DSM) on systems with physically distributed
memory, leveraging virtual memory abstractions (e.g., TreadMarks for DSM; Apache Spark for a
DSM-like abstraction in big data)

* Message Passing

Data exchanged explicitly by sending and receiving messages over a network or interconnect
Standard libraries (e.g., MPI) are widely used
Natural on distributed-memory systems with private memory per processor

Can also be implemented on shared-memory systems (e.g., NUMA), though it may introduce
unnecessary overhead compared to native shared-memory programming

Why (Hardware) Shared Memory?

Advantages:
— For applications looks like a multitasking uniprocessor
— For OS only evolutionary extensions required
— Easy to do communication without OS
— Software can worry about correctness first, then performance

Disadvantages:
— Communication is implicit, hence harder to optimize
— Proper synchronization is complex
— Hardware designers must implement

Result:

— Symmetric Multiprocessors (SMPs) were the foundation of early supercomputers but gave way to
distributed-memory message-passing systems as scaling issues made SMPs less efficient

— Chip Multiprocessors (CMPs) or multicore processors dominate as the most widespread form of parallel
computing, driving multibillion-dollar markets

Intel Nehalem (2008)

sasn}® O/uee e

-
oy
o
(a]
@
e
o
=3
Q
- O
)
‘..\J

DDR3 Memory QuickPath
Controllers Interconnect
F Y 'y F Y E E
¥ v ¥ v v
Ix8B @ 1.33GT/s 4x20b @ 6.4GT/s
B cPU | cu |

Source: http://www.chip-architect.com/

o

. | E S B{E = | T St 0w ;
I . X
v (e
| Interconnection Network

Note that the L3 cache is logically shared but physically distributed across the four cores
- even a single CMP is in fact implemented as a NUMA architecture

Cache Coherence Problem
Step 1

Id r2, x
|

[Interconnection Network]

Main Memory

Cache Coherence Problem
Step 2

Id r2, x Id r2, x
| |

....................................

Main Memory

Cache Coherence Problem
Step 3

Id r2, x @ @ Id r2, x
addrl, r2, r4
| |

stx, rl

[Interconnection Network]

Main Memory

Cache Coherence Problem
Step 4

Id r2, x Id r2, x
addrl, r2, r4
st x, r1 | |

| Id 5, x f

[Interconnection Network]

It is not a matter of N\
t h e Ca C h e n Ot bei ng X E]

write-through!

Main Memory

Really New in Multiprocessors?

* Not really... CPU

DMA

Memory

* But there we have simpler ad-hoc ways to handle this:
— Flush the cache in software
— Invalidate cache lines in software
— Define noncacheable areas of memory and perform I/O there

Coherent Memory System

Preservation of program order. If P writes in X and then P reads in X, and in the
meantime no other processor has written X, the value returned is the value
previously written by P

Coherent view. If P1 writes X and P2 reads X, and in the meantime no other
processor has written X, the value returned is the value previously written by P1, if
the read and write are sufficiently separated in time

Write Serialization. If P1 writes X and P2 writes X, all processors see the writes in the
same order

Cache Coherence Problem
Step 4

Id r2, x Id r2, x
addrl, r2, r4
st x, rl | |

| Id 15, x f

[Interconnection Network]

It is not a matter of
giving sufficient time!

Main Memory

Snoopy Cache-Coherence Protocols

e Bus provides serialization point (more on this later)
Unit of data in a cache

* Each cache controller snoops all bus transactions

— Relevant transactions if for a line of cache it contains

— Take appropriate action to ensure coherence
* Invalidate
e Update
e Supply value

Cache
FSMs

— Which one depends on state of the line and the protocol

v
[Simultaneous operation of independent controllers]

FSM of a Cache

* Write-through,
write-no-allocate cache

* Actions:
— PrRd
— PrWr
— BusRd
— BusWr

The FSM of a Simple Cache Protocol

Address

l

Hit

Data

| 24 bits | 8bits |
Index
\ Tag
. 'y
E oft (= &x102) | M[0x102]
255

AL

If evicted, the FSM is “destroyed”
PrWr / BusWr

PrRd / — O
* Write-through,
write-no-allocate cache
e Actions:
PrRd / BusRd — PrRd
— PrWr

The cache only obeys
the processor

— BusRd
— BusWr

PrWr / BusWr

Cache Coherence Problem
Step 4

Id r2, x Id r2, x
addrl, r2, r4
st x, r1 | |

| Id 5, x f

[Interconnection Network]

Now our cache

is write-through Y
X

Main Memory

PrWr / BusWr

PrRd / — O
* Write-through,
write-no-allocate cache
 Actions:
— PrRd
.H — PrWr

— BusRd
— BusWr

PrRd / BusRd

PrWr / BusWr

Simple Invalidate Snooping Protocol

PrWr / BusWr
* Write-through,

PrRd / - O
write-no-allocate cache
BUSWI / — * Actions:
PrRd / BusRd — PrRd
— PrWr

— BusRd
— BusWr

Prwr / BusWr The cache snoops now!

Cache FSMs Work Simultaneously

P1

P2

P3

Address

[24 bits [8hits |

Index

255.

1] oxt(=

x102) | M[0x102]

PrWr / BusWr

Hit

PrRd / -

Dat:
ata BuswWr / -

PrRd / BusRd

® @)

Prwr / BusWr

255.

Address
[24 bits [8hits |
Index J
Tag
] | |
|
PrWr / BusWr
| PrRd / - O
Hit Data BusWr / —
PrRd / BusRd

Prwr / BusWr

Address P W
[24 bits [8hits |
Index
Tag

0:

1:

2: 0x1 (= x102) | M[0x102]

255! Prwr / BusWr
PrRd / -
Hit Data

PrRd / BusRd

BusWr

@ @)

Prwr / BusWr

BuswWr / -

Memory

A 3-State Write-Back

Invalidation Protocol (MSI)
2-State Protocol ’

— Simple hardware and protocol >
— Bandwidth (every write goes on bus!))

Functional issues solved

3-State PFOtOCO' (MSI) (caches are coherent)
— Modified but performance may be abysmal!

* Only one cache has valid/latest copy
* Memory is stale, that is the content is not up-to-date

— Shared

* One or more caches have valid copy

— Invalid

Must invalidate all other copies before entering modified state
Requires bus transaction (order and invalidate)

MSI: Processor and Bus Actions

Processor
— PrRd
— PrWr
Bus
— BusRd (Bus Read) Read without intent to modify, data could come from memory or another cache
— BusRdX (Bus Read Exclusive) Read with intent to modify, must invalidate all other caches copies
— BusWB (Writeback) cache controller puts contents on bus and memory is updated

Definition: cache-to-cache transfer occurs when another cache satisfies BusRd or BusRdX
request with a BuswWB

Let’s draw it! _
A write to memory that can be

simultaneously read also by other caches

()

MSI State Diagram

_\\\
SN
\
\

\
\
\
PrWr / BugRdX | BusRd / BuswB
I \
/ \
/
< \ BusRdX / BusWB
PrWr / BusRdX ~ ll
\ |
\ I
\ _
PrRd / ust< U } Bu//s,RdX/

/
<« 7
-
PrRd / -
BusRd / -

What Has Changed?

We split the original Valid state into / No nefidr Zf/;l\:rltvs;;ttlzrough
two states, one Shared and one y

exclusive/dirty (a.k.a. Modified) Prwr / -
PrRd / -
Local variables cause
~ no memory traffic!
RN
\ \

\
\ \
PrWr / BugRdX BusRd / BuswB

-

/ \
<’ | BusRdX / BusWB
|

N

\ I

\‘ Bu/&TstX /-
Iy

PrWr / BusRdX

PrRd / BusRd

—(=1) —(=1) —(=1)

o B W N

Example of MSI Transactions

—(=1) —(=1) —(=1)

1 P1 reads x S —(=1) —(=1) BusRd Memory
2 P3 reads x S —(=1) S BusRd Memory
3 P3 writes x I —(=1) M BusRdX Memory or not
4 P1 reads x S —(=1) S BusRd P3’s cache
5 P2 reads x S S S BusRd Memory

4-State (MESI) Invalidation Protocol

Often called the lllinois protocol
— Modified (dirty)
— Exclusive (unshared clean = only copy, not dirty)
— Shared
— Invalid

Requires shared signal to detect if other caches have a copy of block

Cache Flush for cache-to-cache transfers
— Only one can do it though

What does state diagram look like?

Many Other Similar Protocols

 More states, different transactions

* Lots of research on how to minimize the coherence traffic
(= better detect when it is not necessary)

-

An important problem is scalability
beyond a few processors/cores

- Directory-Based Cache Coherence

Directory-Based Cache Coherence

e Typically needed in Distributed Memory Architectures

CPU CPU CPU

Interconnection Network

III

Directory keeps unique and “central” track
of existing cache copies and state

Snoopy vs. Directory-Based

* Snoopy protocols are distributed coherence protocols at the cache level
— Scalability issues
— Unnecessary coherence traffic
— Fast

* Directory-based protocols are centralized protocols at the memory level
— Scalable
— Coherence traffic only as actually needed
— Latency issues, due to centralization
— Granularity issues, linked to latency issues

Multilevel Caches

* What happens if instead of CPU = $ 2 Mem
we have CPU2 L1S=2> 125 2 L3S 2> Mem?

* One could just replicate snooping at all levels

CPU CPU CPU

1.

Inclusion Property
between Caches at Levels n-1 and n

Same content: Content of L(n-1) cache is always a subset of the corresponding L(n)
cache

A bus transaction from an L2 cache is also always relevant for the L3 cache, hence a snoop at L3 is
sufficient

Same state: If a cache line is marked as owned/modified in L(n-1) cache, then it
should also be so marked in the corresponding L(n) cache

If a bus transaction requests a cache line in owned/modified state in L3, the L3 cache can determine
this on its own without checking L2

No Snooping Any More? Magic?

CPU CPU CPU

Is Inclusion Naturally Maintained?

* In some cases yes: in a Miss, it is, as L1 misses go to L2 and eventually the
data will be in both

* In the general case no: for instance, L2 will eventually decide to evict a
given line and that may be also in L1 = if nothing special is done,
inclusion will be violated

Essentially, we will need to propagate invalidations and evictions

up the hierarchy to keep, for instance, L1 informed of what happensin L2
- y

No Free Lunch! Only Different Messages

CPU CPU CPU

Which one is easier between snooping and maintaining inclusion
is not trivially determined and well beyond this course...

Snooping

Intel Core and Intel Nehalem

Intel
Core

Front Side Bus Front Side Bus
Interface Interface
*
L
l 8B @

Inclusion

Intel
Nehalem

emory
Controllers

vl vl

L L J
3x8B @ 1.33GTis Ax20b @ 6.4GT/s

References

e Patterson & Hennessy, COD — RISC-V Edition
— Sections 6.3 (SIMD & MIMD)
— Sections 6.5 (Multicores)
— Sections 5.10 (Cache coherence)

	CS-200�Computer Architecture�—�Part 5a. Multiprocessors�Cache Coherence
	Flynn’s Taxonomy (1966)
	Shared-Memory Multiprocessors�(UMA = Uniform Memory Access)
	Distributed-Memory Multiprocessors�(NUMA = Nonuniform Memory Access)
	Programming Paradigms
	Why (Hardware) Shared Memory?
	Intel Nehalem (2008)
	Cache Coherence Problem�Step 1
	Cache Coherence Problem�Step 2
	Cache Coherence Problem�Step 3
	Cache Coherence Problem�Step 4
	Really New in Multiprocessors?
	Coherent Memory System
	Cache Coherence Problem�Step 4
	Snoopy Cache-Coherence Protocols
	Slide Number 16
	The FSM of a Simple Cache Protocol
	Cache Coherence Problem�Step 4
	Slide Number 19
	Simple Invalidate Snooping Protocol
	Cache FSMs Work Simultaneously
	A 3-State Write-Back �Invalidation Protocol (MSI)
	MSI: Processor and Bus Actions
	Slide Number 24
	MSI State Diagram
	What Has Changed?
	Slide Number 27
	Example of MSI Transactions
	4-State (MESI) Invalidation Protocol
	Many Other Similar Protocols
	Directory-Based Cache Coherence
	Snoopy vs. Directory-Based
	Multilevel Caches
	Inclusion Property �between Caches at Levels n-1 and n
	No Snooping Any More? Magic?
	Is Inclusion Naturally Maintained?
	No Free Lunch! Only Different Messages
	Intel Core and Intel Nehalem
	References

