
1

CS-200
Computer Architecture

—
Part 5a. Multiprocessors

Cache Coherence

Paolo Ienne
<paolo.ienne@epfl.ch>

Some slides developed in part by Profs. Adve, Falsafi, Hill, Lebeck, Reinhardt, Smith, and Singh 
of University of Illinois, EPFL, Carnegie Mellon University, University of Wisconsin, Duke University, University of Michigan, and Princeton University



2

Flynn’s Taxonomy (1966)

Single/Multiple Instruction Streams (= programs)
Single/Multiple Data Streams

• SISD: Uniprocessors, what we have seen so far

• SIMD: A single program is run on multiple data sets at once. Classic examples are 
Vector Architectures for high-performance computing, now fairly rare. More 
commonly, x86 supports SIMD through various ISA extensions: MMX (1996), SSE 
(1999-2008), and AVX (2011-2016)

• MIMD: General form of parallelism with each processor executing its own program on 
its own data



3

Shared-Memory Multiprocessors
(UMA = Uniform Memory Access)

• Limited scalability (4-16 processors?)
• Very simple and fairly traditional architecture

Memory

$ $ $

CPU CPU CPU

I/O I/O

Every path to memory 
is essentially the same

Typically a bus or a 
simple interconnect



4

Distributed-Memory Multiprocessors
(NUMA = Nonuniform Memory Access)

• More scalable and cost effective way to grow memory system
• Communication is more complex and higher latency

$

CPU

Memory

I/O

Interconnection Network

$

CPU

Memory

I/O

$

CPU

Memory

I/O

Local memory is 
much faster to access

Often a 
real network



5

Programming Paradigms

• Shared-Memory
– Data exchanged implicitly through shared variables in a common memory space
– Standard libraries (e.g., OpenMP) simplify programming
– Natural on shared-memory architectures (e.g., SMP, NUMA)
– Can be implemented as Distributed Shared Memory (DSM) on systems with physically distributed 

memory, leveraging virtual memory abstractions (e.g., TreadMarks for DSM; Apache Spark for a 
DSM-like abstraction in big data)

• Message Passing
– Data exchanged explicitly by sending and receiving messages over a network or interconnect
– Standard libraries (e.g., MPI) are widely used
– Natural on distributed-memory systems with private memory per processor
– Can also be implemented on shared-memory systems (e.g., NUMA), though it may introduce 

unnecessary overhead compared to native shared-memory programming



6

Why (Hardware) Shared Memory?
• Advantages:

– For applications looks like a multitasking uniprocessor
– For OS only evolutionary extensions required
– Easy to do communication without OS
– Software can worry about correctness first, then performance

• Disadvantages:
– Communication is implicit, hence harder to optimize
– Proper synchronization is complex
– Hardware designers must implement

• Result:
– Symmetric Multiprocessors (SMPs) were the foundation of early supercomputers but gave way to 

distributed-memory message-passing systems as scaling issues made SMPs less efficient
– Chip Multiprocessors (CMPs) or multicore processors dominate as the most widespread form of parallel 

computing, driving multibillion-dollar markets



7

Intel Nehalem (2008)

So
ur

ce
: h

tt
p:

//
w

w
w

.c
hi

p-
ar

ch
ite

ct
.c

om
/

Note that the L3 cache is logically shared but physically distributed across the four cores
 even a single CMP is in fact implemented as a NUMA architecture



8

Cache Coherence Problem
Step 1

P1 P2

x

Interconnection Network

Main Memory

ld r2, x



9

Cache Coherence Problem
Step 2

P1 P2

x

Interconnection Network

Main Memory

ld r2, x ld r2, x



1
0

Cache Coherence Problem
Step 3

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x



1
1

Cache Coherence Problem
Step 4

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x
…
…
ld r5, x

It is not a matter of 
the cache not being 

write-through!



1
2

Really New in Multiprocessors?

• Not really…

• But there we have simpler ad-hoc ways to handle this:
– Flush the cache in software
– Invalidate cache lines in software
– Define noncacheable areas of memory and perform I/O there
– …

$

CPU

DMA

Memory
I/O I/O I/O



1
3

Coherent Memory System

1. Preservation of program order. If P writes in X and then P reads in X, and in the 
meantime no other processor has written X, the value returned is the value 
previously written by P

2. Coherent view. If P1 writes X and P2 reads X, and in the meantime no other 
processor has written X, the value returned is the value previously written by P1, if 
the read and write are sufficiently separated in time

3. Write Serialization. If P1 writes X and P2 writes X, all processors see the writes in the 
same order



1
4

Cache Coherence Problem
Step 4

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x
…
…
ld r5, x

It is not a matter of 
giving sufficient time!



1
5

Snoopy Cache-Coherence Protocols

• Bus provides serialization point (more on this later)

• Each cache controller snoops all bus transactions
– Relevant transactions if for a line of cache it contains
– Take appropriate action to ensure coherence

• Invalidate
• Update
• Supply value

– Which one depends on state of the line and the protocol

Simultaneous operation of independent controllers

Cache
FSMs

Unit of data in a cache



1
6

• Write-through, 
write-no-allocate cache

• Actions: 
– PrRd
– PrWr
– BusRd
– BusWr

FSM of a Cache



1
7

The FSM of a Simple Cache Protocol

PrWr / BusWr

Valid

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd / –

• Write-through, 
write-no-allocate cache

• Actions: 
– PrRd
– PrWr
– BusRd
– BusWr

If evicted, the FSM is “destroyed”

The cache only obeys
the processor



1
8

Cache Coherence Problem
Step 4

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x
…
…
ld r5, x

Now our cache 
is write-through



1
9

• Write-through, 
write-no-allocate cache

• Actions: 
– PrRd
– PrWr
– BusRd
– BusWr

PrWr / BusWr

Valid

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd / –



2
0

Simple Invalidate Snooping Protocol

PrWr / BusWr

Valid

BusWr / –

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd / –

• Write-through, 
write-no-allocate cache

• Actions: 
– PrRd
– PrWr
– BusRd
– BusWr

The cache snoops now!



2
1

Cache FSMs Work Simultaneously

Memory

P1 P2 P3

PrWr

BusWr



2
2

A 3-State Write-Back 
Invalidation Protocol (MSI)

• 2-State Protocol
– Simple hardware and protocol
– Bandwidth (every write goes on bus!)

• 3-State Protocol (MSI)
– Modified

• Only one cache has valid/latest copy
• Memory is stale, that is the content is not up-to-date

– Shared
• One or more caches have valid copy

– Invalid

• Must invalidate all other copies before entering modified state
• Requires bus transaction (order and invalidate)

Functional issues solved
(caches are coherent)

but performance may be abysmal!



2
3

MSI: Processor and Bus Actions
• Processor

– PrRd
– PrWr

• Bus
– BusRd (Bus Read ) Read without intent to modify, data could come from memory or another cache
– BusRdX (Bus Read Exclusive ) Read with intent to modify, must invalidate all other caches copies
– BusWB (Writeback) cache controller puts contents on bus and memory is updated

• Definition: cache-to-cache transfer occurs when another cache satisfies BusRd or BusRdX
request with a BusWB

• Let’s draw it!
A write to memory that can be 

simultaneously read also by other caches



2
4

M

S

I



2
5

MSI State Diagram

PrRd / –

M

BusRdX / BusWB
PrWr / BusRdX S

I

PrWr / –

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd BusRdX / –

PrRd / –
BusRd / –



2
6

What Has Changed?

PrRd / –

M

BusRdX / BusWB
PrWr / BusRdX S

I

PrWr / –

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd BusRdX / –

PrRd / –
BusRd / –

We split the original Valid state into 
two states, one Shared and one 
exclusive/dirty (a.k.a. Modified) PrWr / –

No need of write-through
for every write

Local variables cause 
no memory traffic!



2
7

CPU Action P1 state P2 state P3 state Bus Action Data from

0 – (= I) – (= I) – (= I)

1

2

3

4

5



2
8

Example of MSI Transactions

CPU Action P1 state P2 state P3 state Bus Action Data from

0 – (= I) – (= I) – (= I)

1 P1 reads x S – (= I) – (= I) BusRd Memory

2 P3 reads x S – (= I) S BusRd Memory

3 P3 writes x I – (= I) M BusRdX Memory or not

4 P1 reads x S – (= I) S BusRd P3’s cache

5 P2 reads x S S S BusRd Memory



2
9

4-State (MESI) Invalidation Protocol

• Often called the Illinois protocol
– Modified (dirty)
– Exclusive (unshared clean = only copy, not dirty)
– Shared
– Invalid

• Requires shared signal to detect if other caches have a copy of block
• Cache Flush for cache-to-cache transfers

– Only one can do it though

• What does state diagram look like?



3
0

Many Other Similar Protocols

• More states, different transactions
• Lots of research on how to minimize the coherence traffic 

(= better detect when it is not necessary)

An important problem is scalability
beyond a few processors/cores

 Directory-Based Cache Coherence



3
1

Directory-Based Cache Coherence
• Typically needed in Distributed Memory Architectures

Directory keeps unique and “central” track 
of existing cache copies and state

$

CPU

Memory

I/O

Interconnection Network

$

CPU

Memory

I/O

$

CPU

Memory

I/O
Directory Directory Directory



3
2

Snoopy vs. Directory-Based

• Snoopy protocols are distributed coherence protocols at the cache level
– Scalability issues
– Unnecessary coherence traffic
– Fast

• Directory-based protocols are centralized protocols at the memory level
– Scalable
– Coherence traffic only as actually needed
– Latency issues, due to centralization
– Granularity issues, linked to latency issues



3
3

Multilevel Caches

• What happens if instead of CPU  $ Mem
we have CPU  L1 $  L2 $  L3 $ Mem?

• One could just replicate snooping at all levels

L3 $

L2 $ L2 $ L2 $

L1 $ L1 $ L1 $

CPU CPU CPU



3
4

Inclusion Property 
between Caches at Levels n-1 and n

1. Same content: Content of L(n-1) cache is always a subset of the corresponding L(n) 
cache

A bus transaction from an L2 cache is also always relevant for the L3 cache, hence a snoop at L3 is 
sufficient

2. Same state: If a cache line is marked as owned/modified in L(n-1) cache, then it 
should also be so marked in the corresponding L(n) cache

If a bus transaction requests a cache line in owned/modified state in L3, the L3 cache can determine 
this on its own without checking L2



3
5

No Snooping Any More? Magic? 

L3 $

L2 $ L2 $ L2 $

L1 $ L1 $ L1 $

CPU CPU CPU

? ?



3
6

Is Inclusion Naturally Maintained?

• In some cases yes: in a Miss, it is, as L1 misses go to L2 and eventually the 
data will be in both

• In the general case no: for instance, L2 will eventually decide to evict a 
given line and that may be also in L1  if nothing special is done, 
inclusion will be violated

Essentially, we will need to propagate invalidations and evictions
up the hierarchy to keep, for instance, L1 informed of what happens in L2



3
7

No Free Lunch! Only Different Messages

L3 $

L2 $ L2 $ L2 $

L1 $ L1 $ L1 $

CPU CPU CPU

Which one is easier between snooping and maintaining inclusion 
is not trivially determined and well beyond this course…



3
8

Intel Core and Intel Nehalem

Intel
Core

Intel
Nehalem

Snooping Inclusion



3
9

References

• Patterson & Hennessy, COD – RISC-V Edition
– Sections 6.3 (SIMD & MIMD)
– Sections 6.5 (Multicores)
– Sections 5.10 (Cache coherence)


	CS-200�Computer Architecture�—�Part 5a. Multiprocessors�Cache Coherence
	Flynn’s Taxonomy (1966)
	Shared-Memory Multiprocessors�(UMA = Uniform Memory Access)
	Distributed-Memory Multiprocessors�(NUMA = Nonuniform Memory Access)
	Programming Paradigms
	Why (Hardware) Shared Memory?
	Intel Nehalem (2008)
	Cache Coherence Problem�Step 1
	Cache Coherence Problem�Step 2
	Cache Coherence Problem�Step 3
	Cache Coherence Problem�Step 4
	Really New in Multiprocessors?
	Coherent Memory System
	Cache Coherence Problem�Step 4
	Snoopy Cache-Coherence Protocols
	Slide Number 16
	The FSM of a Simple Cache Protocol
	Cache Coherence Problem�Step 4
	Slide Number 19
	Simple Invalidate Snooping Protocol
	Cache FSMs Work Simultaneously
	A 3-State Write-Back �Invalidation Protocol (MSI)
	MSI: Processor and Bus Actions
	Slide Number 24
	MSI State Diagram
	What Has Changed?
	Slide Number 27
	Example of MSI Transactions
	4-State (MESI) Invalidation Protocol
	Many Other Similar Protocols
	Directory-Based Cache Coherence
	Snoopy vs. Directory-Based
	Multilevel Caches
	Inclusion Property �between Caches at Levels n-1 and n
	No Snooping Any More? Magic? 
	Is Inclusion Naturally Maintained?
	No Free Lunch! Only Different Messages
	Intel Core and Intel Nehalem
	References

